Activation of 5-HT1A receptors in raphe pallidus inhibits leptin-evoked increases in brown adipose tissue thermogenesis.
نویسنده
چکیده
To elucidate the central neural pathways contributing to the thermogenic component of the autonomic response to intravenous administration of leptin, experiments were conducted in urethane-chloralose-anesthetized, ventilated rats to address 1) the role of neurons in the rostral ventromedial medulla, including raphe pallidus (RPa), in the leptin-evoked stimulation of brown adipose tissue (BAT) sympathetic nerve activity (SNA); and 2) the potential thermolytic effect of 5-hydroxytryptamine(1A) (5-HT(1A)) receptors on RPa neurons that influence BAT thermogenesis. Leptin (1 mg/kg) administration increased BAT SNA by 1,219% of control, BAT temperature by 2.8 degrees C, expired CO(2) by 1.8%, heart rate by 90 beats/min, and mean arterial pressure by 12 mmHg. Microinjection of the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) into RPa resulted in a prompt and sustained reversal of the leptin-evoked stimulation of BAT SNA, BAT thermogenesis, and heart rate, with these variables returning to their pre-leptin control levels. Subsequent microinjection of the selective 5-HT(1A) receptor antagonist WAY-100635 into RPa reversed the BAT thermolytic effects of 8-OH-DPAT, returning BAT SNA and BAT temperature to the elevated levels after leptin. In conclusion, activation of neurons in RPa, possibly BAT sympathetic premotor neurons, is essential for the increases in BAT SNA, BAT thermogenesis, and heart rate stimulated by intravenous administration of leptin. Neurons in RPa express 5-HT(1A) receptors whose activation leads to reversal of the BAT thermogenic and the cardiovascular responses to intravenous leptin, possibly through hyperpolarization of local sympathetic premotor neurons. These results contribute to our understanding of central neural substrates for the augmented energy expenditure stimulated by leptin.
منابع مشابه
Vagal afferent activation decreases brown adipose tissue (BAT) sympathetic nerve activity and BAT thermogenesis
In urethane/α-chloralose anesthetized rats, electrical stimulation of cervical vagal afferent fibers inhibited the increases in brown adipose tissue sympathetic nerve activity and brown adipose tissue thermogenesis evoked by cold exposure, by nanoinjection of the GABAA receptor antagonist, bicuculline, in the dorsomedial hypothalamus, and by nanoinjection of N-methyl-D-aspartate in the rostral ...
متن کاملCALL FOR PAPERS Physiology and Pharmacology of Temperature Regulation Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue
Nakamura, Kazuhiro, and Shaun F. Morrison. Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 292: R127–R136, 2007. First published August 24, 2006; doi:10.1152/ajpregu.00427.2006.—Control of thermoregulatory effectors by the autonomic nervous system is a critical component of rapid cold-defense respo...
متن کاملBrown adipose tissue thermogenesis contributes to fentanyl-evoked hyperthermia.
Mu-opioid receptor activation increases body temperature and affects cardiovascular function. In the present study, fentanyl was administered intravenously [100 mug/kg (300 nmol/kg) iv] and intracerebroventricularly [3.4 mug (10 nmol) in 10 microl icv] in urethane-chloralose-anesthetized, artificially ventilated rats. Increases in brown adipose tissue (BAT) sympathetic nerve activity (SNA) (pea...
متن کاملA high-fat diet impairs cooling-evoked brown adipose tissue activation via a vagal afferent mechanism.
In dramatic contrast to rats on a control diet, rats maintained on a high-fat diet (HFD) failed to activate brown adipose tissue (BAT) during cooling despite robust increases in their BAT activity following direct activation of their BAT sympathetic premotor neurons in the raphe pallidus. Cervical vagotomy or blockade of glutamate receptors in the nucleus of the tractus solitarii (NTS) reversed...
متن کاملNeurons in the paraventricular nucleus of the hypothalamus inhibit sympathetic outflow to brown adipose tissue.
The paraventricular nucleus of the hypothalamus (PVH) plays an important role in energy homeostasis, regulating neuroendocrine, behavioral, and autonomic functions. However, the role of the PVH in regulating thermogenesis and energy expenditure in brown adipose tissue (BAT) is unclear. The present study investigated the effect of activating neurons within the PVH on BAT thermogenesis. In uretha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 286 5 شماره
صفحات -
تاریخ انتشار 2004